
PHYSICAL REVIEW A 112, 033101 (2025)
Editors’ Suggestion

Towards trapping of hydrogen atoms for computable optical clock applications
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Because of its simple structure, the hydrogen atom is often used as a testbed for quantum electrodynamics.
Spectroscopy of trapped atomic samples can greatly improve the accuracy of these tests. Trapping atomic
hydrogen in an optical dipole trap or an optical lattice has never been achieved. Only trapping in magnetic
fields that lead to large Zeeman shifts has been demonstrated. Standard techniques of atomic physics are difficult
to apply to atomic hydrogen. The small mass of the atom and the large photon energy of the 1S-2P cooling
transition significantly complicate Doppler cooling. This proposal introduces a photon recoil-assisted loading
scheme that uses these properties to our advantage to load atomic hydrogen into an optical dipole trap without
laser cooling. The magic wavelength (515 nm) for the 1S-2S clock transition (1.3-Hz natural linewidth) is easily
accessible with current laser technology. Since the 1S-2S clock transition can be driven Doppler free, we do not
require a very low temperature. Besides improving spectroscopy for fundamental science, such a system can also
be used as a “computable” atomic clock that may one day justify the redefinition of the SI second in terms of the
Rydberg constant.

DOI: 10.1103/3bnr-q23f

I. MOTIVATION

The discrete line spectrum of atomic hydrogen has been
the Rosetta Stone for the development of quantum mechanics.
As the simplest of all atoms, hydrogen allows for the most
precise calculations. Classical physics fails to describe the
hydrogen atom. The discrepancy between classical physics
and experimental observations gave rise to the first quantum
model by N. Bohr [1]. In large parts, atomic hydrogen was key
to developing quantum mechanics. Subsequent refinements
led to the quantum theories of E. Schrödinger and P. A. M.
Dirac. Another famous discrepancy between Dirac’s theory
and observations discovered by W. E. Lamb and R. C. Rether-
ford [2] led to the most accurate theory in all of physics so far,
the theory of quantum electrodynamics (QED).
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QED is part of the Standard Model and serves as a
blueprint for all quantum field theories therein. The precise
determinations of transition frequencies of simple atomic sys-
tems are required to test QED. The sharpest transition in
atomic hydrogen occurs between the 1S ground state and the
metastable 2S state with a natural linewidth of only 1.3 Hz.
Its transition frequency has been measured with almost 15-
digit accuracy using an optical frequency comb and a cesium
atomic clock as a reference [3]. However, the first laser mea-
surement of the Lamb shift in muonic hydrogen was found in
significant contradiction to the hydrogen data obtained until
then [4,5]. Today, improvements in experimental techniques,
such as the optical frequency comb [6], continue to add more
digits to the measured transition frequencies [7–9] that can be
compared with ever-improving theoretical calculations. Such
a comparison acts as a probe for physics beyond the Standard
Model [10–13].

Atomic hydrogen has an attractive level scheme for an
optical clock. Since there is no 1P state, the 2S state can
neither decay nor be excited with a single (optical) photon
dipole transition, at least not in a field-free environment.
This has three important advantages: The natural linewidth
of A/2π = 1.3 Hz, combined with the high transition fre-
quency of νclock = 2 466 THz, leads to a quality factor of
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FIG. 1. Simplified level scheme (without fine- and hyperfine-
structure) of atomic hydrogen with decay rates A and transition
wavelengths. The two-photon transition from the 1S ground state to
the metastable 2S state serves as the clock transition. The 2S and 2P
levels have almost degenerate energies.

Q = 2πνclock/A = 1.9×1015, similarly to the quality factor of
the Ca+ clock [14]. Because the 1S-2S clock is excited with
two photons as sketched in Fig. 1, the probe laser operates at
243 nm rather than 121.6 nm (Lyman-α). Last, the two-photon
excitation can be arranged such that it is free of the first-order
Doppler effect. This eliminates a set of systematic effects.

The main experimental limitation has been the difficulty
of laser cooling atomic hydrogen because no simple contin-
uous wave laser can address the 121.6-nm Lyman-α 1S-2P
Doppler cooling transition (see Fig. 1). Additional challenges
are the low mass, the rather large linewidth of the cooling
transition (A/2π = 100 MHz), and the energetically allowed
ionization from the 2P state by the cooling laser. The latter
problem persists even when cooling with a two-photon transi-
tion. Using the 1S-2S transition for two-photon cooling does
have the additional problem of an extremely low scattering
rate. Several proposals to solve these issues have been made
[15–18]. However, none of these have been implemented yet
for atomic hydrogen to the best of our knowledge.

We propose a new method to overcome this barrier and
to load atomic hydrogen into an optical dipole trap (or op-
tical lattice) without laser cooling using off-the-shelf lasers.
Once in the trap, other cooling methods, like evaporative or
adiabatic expansion cooling [19], may be applied. It turns out
that for the exotic parameters of atomic hydrogen, the better
strategy is to trap before cooling, while most other species
need to be cooled before they can be trapped. An advantage
of the 1S-2S clock transition is that it can be driven with two
photons in a Doppler-free arrangement. In this case, the lowest
temperatures are not required, but trapping is important for a
long interaction time.

Our approach is based on magnetic deceleration within a
cryogenic nozzle, velocity selective deflection, and a single
recoil event from deexcitation within an optical dipole trap.
Given the low mass, a single photon recoil can almost stop
the atoms within the trap. Such a trap may operate at one of
the magic wavelengths that cause identical light shifts to the
ground and the excited states, providing a trapping potential
without affecting the clock transition frequency [20,21]. The
longest magic wavelength for the 1S-2S clock transition is at
514.646 nm [22]. Powerful and narrow-band lasers are readily
available at this wavelength.

It should be mentioned that atomic hydrogen has been
trapped in the past using superconducting magnetic traps [23].
These traps were also loaded without laser cooling. While a

continuous wave Lyman-α laser is still very difficult with only
microwatts of power available [24], simpler pulsed systems
can have similar average powers albeit with ∼10 Hz repetition
rates [25,26]. One cannot laser-cool atomic hydrogen from a
thermal gas or an atomic beam with these parameters. How-
ever, laser cooling to 8 mK has been achieved when the atoms
are already within a magnetic trap and exposed to the laser
for 15 min [27]. The 1S-2S clock transition has been observed
under these conditions [28], and even Bose-Einstein conden-
sation was achieved [29]. This work is now being revived in
other labs [30,31]. Other schemes of magnetic trapping use a
Zeeman decelerator [32].

At CERN, the Antiproton Decelerator routinely allows the
production and investigation of antihydrogen. Among oth-
ers, the ground-state hyperfine splitting [33], the 1S-2S clock
transition [34], and the gravitational acceleration have been
measured [35]. Laser cooling of antihydrogen requires several
hours of laser exposure [36]. This reemphasizes that cooling
can only be achieved once the atoms are trapped. Reloading
into an optical dipole trap and transporting antihydrogen out
of the strong magnetic fields may be an option for future
experiments. While antihydrogen is produced within the trap,
we will have to load hydrogen first but expect a much higher
initial density.

Superconducting magnetic traps are large and cumbersome
setups that we do not consider suitable for clock applications
that should be simpler and have the potential to operate with a
large duty cycle without human intervention. In addition, the
Zeeman shifts can pose a challenge to the expected accuracy.
The current proposal aims to describe a path to load atomic
hydrogen in an optical dipole trap that avoids this compli-
cation as well as the difficult Lyman-α laser. Besides this
scheme, many researchers are working to solve this problem.
Laser-cooled and dissociated diatomic hydrides [37–39] are
an option. Similar ideas have been proposed for antihydrogen
[40] by sympathetically cooling H̄+ ions [41]. Sympathetic
cooling in a lithium MOT is another idea that has been pro-
posed [42] as well as helium buffer gas and lithium-assisted
evaporative cooling [43]. Buffer gas has also been suggested
to be used with deep optical potentials to assist loading [44].

Redefinition of the second

One can achieve greater spectroscopic precision and po-
tentially develop a hydrogen optical atomic clock by utilizing
trapped atomic hydrogen. Based on the most basic stable
atoms, this clock has been referred to as the first “computable
clock” [45]. Its transition frequency can be linked directly
to fundamental constants such as the Rydberg constant R∞.
Defining the value of the Rydberg constant would make it
possible to establish a new SI second [46]. A similar pro-
posal of a hydrogen optical lattice clock has recently been
published by J. P. Scott [47] and coworkers, albeit without
a method of loading the dipole trap, which is the focus of this
work.

Fixing the values of constants with units is the best method
to define these units because it separates the definition from
the realization. For example, the new kilogram (kg) is based
on the definition of the value of Planck’s constant, the speed
of light, and the Cs ground-state hyperfine splitting νCs. Cur-
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rently, two very different methods exist to realize the kg (using
a silicon sphere or a Kibble balance). In the future, there can
be other methods of realizing the kg that adapt to possible
technological advancements without ever changing the def-
inition. Another advantage is that different realizations can
operate on vastly different scales, similarly to the realizations
of the meter by laser interferometry on a micrometer scale and
lunar ranging on a 108-m scale.

With the 2018 reform of the SI system, all but one of the
units are now based on defined constants. The only remaining
(natural) object is the cesium atom used to define and realize
the SI second by fixing the value of νCs. A natural way to
proceed is to remove the last object from the SI by defining
the value of the Rydberg constant. This fixes all atomic and
molecular transition frequencies that can be expressed as a di-
mensionless theory expression multiplied by R∞. The theory
must be developed to compute these transition frequencies to
use this possibility. Therefore, hydrogen is the first but not
the only choice for the realization. Hydrogen-like helium ions
can be held in an ion trap and sympathetically cooled using
beryllium ions [48] and might also serve this purpose in the
future [46].

Currently, the theory can predict hydrogen levels with an
uncertainty of 10−13, which excludes experimental uncertain-
ties from constants. This precision is limited by higher-order
nuclear effects such as polarizability and higher-order bound-
state QED contributions. An unresolved issue is the lack
of a precise value for the nuclear charge radii entering the
theory (see, for example, Ref. [9]). Possible solutions are
advancements in lattice QCD techniques that, in principle,
allow the calculation of the charge radii [49]. Pure leptonic
systems such as positronium and muonium could also solve
this problem, but their short lifetime would limit the achiev-
able accuracy [50,51].

A hydrogen clock may not be the most accurate compared
to clocks based on other atoms (Sr, Yb) or ions (Al+, Yb+),
as other optical clocks currently provide better stability and
accuracy. However, with precise ratio measurements [52] in-
volving the hydrogen clock, it is still possible to define the
second using the Rydberg constant. That said, given that the
gravitational redshift within the trapped atomic cloud is now
the limiting factor [53], it may be that accuracy is no longer
the sole criterion for evaluating a good clock.

II. SYSTEM OVERVIEW

In this section, we present an overview of the proposed
setup before we discuss the details in the following sections.
As sketched in Fig. 2, an atomic hydrogen beam is obtained
from a cryogenic nozzle [54], described in more details in
Sec. III. In contrast to our existing 1S-2S spectrometer [3],
a collinear laser beam does not need to go through the noz-
zle. This gives us more freedom in the design to obtain a
significantly larger atomic hydrogen flux. With our previous
“T-shaped” nozzle (see for example [3,55,56]), atoms on-axis
can only emerge from atom-atom collisions. As detailed in
the next section, collisions are rare and so is the overall flux
[56,57]. The atomic beam obtained with the nozzle sketched
in Fig. 2, emerges from a 5 K cold surface of a permanent
magnet after thermalizing on the surface. Hydrogen atoms are

FIG. 2. A possible layout of the proposed hydrogen trap (not
to scale). From the bottom to the top: A 5 K beam of atomic
hydrogen is formed within the nozzle. The atoms emerge from the
surface of a magnet, where the high-field-seeking atoms need to
crawl uphill to escape. A 243-nm laser beam deflects some atoms
by exciting them to the metastable 2S state. The deflection angle θ

is velocity dependent. The angle is chosen such that atoms with an
initial velocity vs travel along the axis of the trapping laser (optical
dipole trap at 515 nm) through a differential pumping section into
an ultrahigh vacuum trap chamber. The trapping laser also acts as a
waveguide for the 2S atoms. Two selected trajectories are plotted to
show the oscillatory behavior of the atoms within the waveguide. The
trapping laser perturbs the 2S atoms and causes some to return to the
1S ground state, predominantly at the trap center, upon which they
receive a large photon recoil in a random direction. Some of these
recoils have the proper direction so that the emitting atoms remain
in the trap. The 1S ground state then no longer scatters trap-laser
photons. An optional weak laser tuned close to the Balmer-α 2S-3P
transition at 656 nm may be used for additional quenching and as
a potential barrier. For the modeling, we assume the parameters:
vs = 5 m/s, w0 = 50 µm, dn = 10 cm, dt = 30 cm as well as 6 W
and 1 kW of laser power at 243 and 515 nm, respectively. The nozzle
radius is assumed to be Rn = 0.5 mm. The final design may use
different parameters as we optimize the system.

guided to the nozzle from a gas discharge that breaks up the
molecules. Teflon tubing prevents the atoms from recombin-
ing into molecules.
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Upon leaving the nozzle, the high-field-seeking atoms are
slowed down so that their number in the slow tail of the
Maxwell-Boltzmann distribution is enhanced (see Sec. III B).
Some slow atoms are later removed by collisions with the
faster atoms within the beam. This is known as the “Zacharias
effect” [58,59], as discussed in Sec. III A.

The atomic beam then crosses a laser beam at 243 nm,
enhanced in a resonator, that drives the 1S-2S two-photon
transition. The laser light is tuned to the Doppler-sensitive
component, where two photons from either direction are
absorbed. This gives the atoms a recoil along the x axis.
The velocities are thereby dispersed as discussed in Sec. IV.
The undeflected and reverse-deflected atoms (not shown in
Fig. 2 for clarity) can be employed for normalization. Such a
normalization was previously essential for high-quality data
in our 1S-3S experiment [8]. A range of velocities can be
selected using a series of slits, skimmers, or a long and
narrow tube acting as the separator for differential pump-
ing between the beam chamber with high-vacuum and the
ultra-high-vacuum (UHV) trap chamber. Very low pressures
(<10−8 mbar) are required for stable trapping. Additional dif-
ferential pumping around the nozzle and a gas catcher might
be required.

We do not know the lowest velocities still present in the
beam because of expected deviations from the Maxwell-
Boltzmann distribution due to the Zacharias effect. We assume
that vs = 5.0 m/s (vi ≈ 3.8 m/s) atoms are available from
a cryogenic nozzle, corresponding to a deflection angle of
θ = 41◦. We use these numbers for the discussion in this work
even though the final design may differ.

The deflected atoms are funneled (curved lines) by the
515-nm trapping laser dipole force towards the high-intensity
trapping region, where they are predominately quenched to
the 1S ground state. This happens because the trapping laser
mixes the metastable 2S state with the short-lived P states,
causing the 2S state to decay. The quenching process is de-
scribed in more details in Sec. VI A. This gives rise to a large
recoil from the involved photons in a random direction and
changes the velocity by as much as 4 m/s. Without this kinetic
energy dissipation, atoms that enter the trap would exit on
the other side. This process ensures that dissipation occurs
predominantly within the trap region, reducing unnecessary
dissipation in areas where it would be ineffective. A fraction
of the atoms receive the proper recoil to let them stay in
the trap (see Sec. VI B), and a steady number of trapped
atoms develops from the equilibrium of the trapping and
loss rates (discussion in Sec. VI E). The loss rate is dom-
inated by collisions of trapped atoms with the background
gas rather than from the incoming atomic beam as described
in Sec. VI D.

Loading a shallow trap with a low intrinsic quenching rate
might be possible with an additional quenching laser close to
the Balmer-α 2S-3P transition at 656 nm. The fast decay of
the 3P state to the ground state can provide the required recoil.
By blue detuning this laser, an additional potential barrier can
be generated that slows down the atoms before quenching
them. As the 2S-3P transition is dipole allowed, milliwatts
power level would be sufficient for this purpose, which is
readily available from a diode laser. Even though a shallow
trap would significantly reduce the experimental efforts and

many important systematic effects, it also reduces the loading
rate because fewer atoms get funneled into the trap center.

Energetically, a single 515-nm photon is insufficient to
ionize the 2S state. However, at high intensities, two-photon
ionization is not negligible [60,61]. In this case, the quenching
rate competes with the two-photon ionization rate. The former
is proportional to the intensity, while the latter is proportional
to the intensity squared. Limiting the trapping laser intensity
allows for a useful trapping rate while keeping the two-photon
ionization rate sufficiently low.

Once the trap is filled, the atomic beam can be turned off
by switching off the 243-nm laser. An in-trap cooling step,
discussed in Sec. VI F, might be added to reduce the tempera-
ture if the second-order Doppler shift is limiting. Note that the
1S-2S clock transition will be driven as a first-order Doppler-
free two-photon transition that does not require a very low
temperature. The 1S-2S clock transition can then be driven
with the same 243-nm laser that provides the atomic beam
deflection. In the simplest case, the signal for a successful
1S-2S transition would be subsequent ionization possible with
a third 243-nm photon (see Sec. VII A). Ions can be detected
with a quantum efficiency close to unity and a very low back-
ground. In Sec. VII C, we discuss the expected uncertainties
of the optical hydrogen clock.

Even without trapping, the velocity selective deflection
method can potentially enhance current experiments on
atomic hydrogen by generating a cold atomic beam. At
present, precision spectroscopy of atomic hydrogen relies
heavily on thermal atomic beams [54,57]. However, the ac-
curacy of these measurements is limited by factors such as the
Doppler effects and other systematic errors associated with
the motion of the atoms. Efforts are made to minimize these
limitations [62–64].

III. CRYOGENIC NOZZLE

Atomic hydrogen is produced in a McCarroll-type dis-
charge radio frequency cavity [65] and guided to the cryogenic
nozzle with Teflon tubing that is known to prevent recombi-
nation to molecular hydrogen [66]. We previously estimated
the flux of atomic hydrogen emanating from one side of our
T-shaped nozzle to 1.6×1016 atoms per second [56] by using
the flux of molecules into the radio frequency discharge and an
estimated dissociation fraction of 10%. Most of the molecular
hydrogen freezes at the nozzle such that the emerging gas
has about the same particle flux of atomic and molecular
hydrogen. Based on the result presented in Ref. [57], we know
that the flux from a “bent nozzle” can be considerably higher.
A flux of up to 1020 atoms per second has been reported in the
literature [67]. As we have not yet fully characterized other
designs, we estimate that we will be able to generate a flux of
f0 = 1018 atoms per second. Molecular hydrogen freezing at
the nozzle orifice may limit the uptime of the experiment. A
large flux is a key element in this proposal because it permits
us to select a tiny fraction of trapable atoms from it while still
having a sufficient signal-to-noise ratio.

As a first approximation, we assume the Maxwell-
Boltzmann velocity distribution for an effusive beam. This
distribution is multiplied by the velocity v to obtain the flux
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as a function of the magnitude of the velocity [68,69]

f (v)dv = 2v3

v4
0

e−(v/v0 )2
dv with v0 =

√
2kBT

m
, (1)

with the Boltzmann constant kB, the mass of the atoms m,
and the mean (flux averaged) thermal velocity (3

√
π/4)v0. At

a temperature of T = 5K, we have v0 = 287 m/s for atomic
hydrogen.

The low-velocity tail of this distribution is largely sup-
pressed. The flux at vs = 5 m/s atoms that we select (see
below) is almost five orders of magnitude lower than the peak
of the flux distribution of the ideal Maxwellian. Moreover,
for the lowest velocities, the Zacharias effect almost certainly
modifies this distribution, which further reduces this number.
The nozzle properties have been extensively discussed in Ref.
[54]; however, without treatment of this suppression of the
slow atoms. How strong this suppression is depends on the
shape of the nozzle, the distance from the nozzle, and most
likely on other things, as discussed in the following.

A. The “Zacharias effect”

1. Intrabeam

Obtaining a significant fraction of slow atoms is essential
for the proposed experiment. The Zacharias effect removes
those atoms by collisions within the beam [58,59,70]. An ana-
lytic expression that describes the modification of the velocity
distribution in a collimated atomic beam at large distances
from the nozzle has been derived [71,72], long before J. R.
Zacharias attempted the first atomic fountain experiment that
failed because of the lack of slow atoms in a thermal beam.
To accommodate this effect the Maxwellian in (1) needs to
be multiplied with a suppression factor e−vcut/v with vcut =
σ rnρ0v0/

√
π that includes the nozzle orifice radius rn, the

density of atoms and molecules within the nozzle ρ0, the Bohr
radius a0 and the collisional cross section σ .

The latter requires special attention. It is not simply given
through the Bohr radius. Instead, the assumed cross section is
defined by the process that deflects an atom by an angle
sufficient to remove it from the beam. Hence, it depends on
the long-range interaction, the beam shape, and the mean
velocity of the atoms. By solving the Newtonian equation of
motion in a potential −C6/R6 with the distance R and the van
der Waals coefficient C6, the deflection radius is obtained as
rd = (15πC6/16kBT )1/6 [73], which is the minimum distance
of a slow atom being passed by a fast atom with an average
speed (in the beam) of v0 and experiences a deflection angle
of 45◦ due to this passage. This angle is the opening angle of
the beam leaving the nozzle [see (8)]. The assumption here
is that lower deflection angles merely redistribute the slow
atoms within the atomic beam, while larger angles lead to
their removal. The cross section for slow atom removal is then
given as σ = πr2

d .
Precise values for the van der Waals coefficients for the

interaction of a 1S hydrogen atom with another one and
with a H2 molecule can be obtained as C6 = 6.50a6

0Eh and
C6 = 8.7a6

0Eh, respectively [74], with the Hatree energy Eh.
Using the larger of the two coefficients, we get σ = π (11a0)2.
For our previous T-shaped nozzle, we estimate the particle

FIG. 3. The “Zacharias” slow velocity suppression factor e−vcut/v

for vcut = 4.7 m/s that multiplies the Maxwell-Boltzmann distribu-
tion based on the theory presented in Ref. [71]. For vs = 5 m/s, the
suppression factor is 0.4.

density inside the nozzle to be ρ0 = 5.4×1019 m3 [56]. With
rn = 0.5 mm and T = 5K, we obtain vcut = 4.7 m/s (ignoring
the lower mean velocity of H2 in the beam). Figure 3 plots the
suppression function under these conditions. This somewhat
justifies the assumption that we will have some vs = 5 m/s
atoms at our disposal.

It is crucial to acknowledge that the results of the Zacharias
effect are not definitive. Achieving estimates of the Zacharias
effect given above necessitates further extensive theoretical
work. Such in-depth analysis extends beyond the scope of
this paper. Hence, it is essential to recognize the potential
for inaccuracies in these initial estimations for this effect.
Consequently, an experimental confirmation is desirable at
this stage.

2. Intranozzle

The T-shaped nozzle is designed so that its inner surfaces
do not intersect the atomic beam axis, meaning all on-axis
atoms are generated through atom-atom collisions. As a result,
the on-axis beam intensity is reduced compared to the bent
nozzle design. Increasing the internal pressure of the T-shaped
nozzle augments the collision rate and subsequently boosts the
on-axis atomic flux. However, this also leads to a pronounced
intrabeam Zacharias effect, lowering the slow atoms flux.
In contrast, the bent nozzle design can operate effectively
at lower pressures, achieving comparable flow rates while
preserving the slow atom component. Consequently, the flux
from the nozzle has a scalability limit, and increasing the
pressure indefinitely is not a viable solution to enhance the
slow atom flux.

The reduction of the total flux and the suppression of the
slow atoms from a T-shaped nozzle have been clearly ob-
served earlier [57]. The same work also shows data for a bent
nozzle. In this configuration, the atoms forming the atomic
beam emerge directly from a cold surface within the nozzle,
not from collisions. Such a nozzle does not show any measur-
able suppression of the slow atoms, albeit the detection limit
due to the apparatus has been v > 78 m/s [57]. Moreover, the
flux of the bent nozzle seems to be larger as the signal shows
no sign of noise.
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FIG. 4. Breit-Rabi diagram of the hydrogen 1S hyperfine levels
with total atomic angular momentum F and z component M (the
2S looks the same with different splittings). The two lower levels
(red) are high-field seekers, while the upper two (blue) are low-field
seekers. This property can slow down the high-field-seeking atoms
as they leave the nozzle.

Independently, we can also confirm this problem of the
T-shaped nozzle using the delayed detection scheme in Ref.
[56]. In contrast to the intrabeam model of I. Estermann and
O. Stern [71], we find a very different temperature dependence
[56]. We explain this with the strong temperature dependence
of the recombination rate (atomic hydrogen to molecular hy-
drogen), which is not part of the Estermann model. With the
nozzle design sketched in Fig. 2, atoms that emerge from a
cold surface form the beam that is velocity selected. Hence,
we expect the intranozzle Zacharias effect will be significantly
decreased in this design.

B. Magnetic slowing

To further enhance the flux of slow atoms, we plan to
include a strong permanent magnet into the nozzle as sketched
in Fig. 2. The magnetic interaction energy of the high-
field-seeking atoms is dominated by the electron’s magnetic
moment in the Paschen-Back regime. This energy is given
by the larger splitting at the high field side of the Breit-Rabi
diagram [75] shown in Fig. 4. The velocity flux distribution
(1) of the high-field-seeking atoms is shifted towards lower
velocities via

mv2
i

2
→ mv2

f

2
+ E0, (2)

as these atoms leave the nozzle. Here E0 = −μBB with Bohr’s
magneton μB and the magnetic field B at the surface.

In this way, we derive a modified flux distribution of veloc-
ity magnitudes v

fm(v)dv = 2(v2 + 2E0/m)3/2 e−v2/v2
0√

πv4
0U (−3/2,−1, E0/kBT )

dv, (3)

with the Tricomi confluent hypergeometric function U (a, b, z)
in the normalization factor. The distribution for the low-field-
seeking atoms has the sign of E0 flipped. Figure 5 plots
these distributions for magnetic field maxima of B = 1 T and
B = 10 T. The relative enhancement of the slow atoms is
also shown. According to this model, the flux enhancement at

FIG. 5. Top: Maxwell-Boltzmann distribution (black) according
to (1) and modification by a magnetic field B = 1 T and B = 10 T
according to (3). The dashed curves represent the corresponding
low-field-seeking atoms that get accelerated upon leaving the nozzle.
Bottom: Ratio of the modified velocity distributions of the high-field-
seeking atoms normalized to the unmodified Maxwell-Boltzmann
distribution in the range of low velocities for B = 1 T and B = 10 T.

vs = 5 m/s is 8×103 with a magnetic field maximum of
B = 1 T and gets significantly larger for lower velocities.
Increasing the magnetic field strength to 10 T would result
in another order of magnitude improvement.

A magnetic field of 1 T can be generated by a permanent
magnet with a conic shape where the poles are at the tip
and base of the cone (see Fig. 2). Due to the focusing of
the magnetic field lines at the tip, one can get the highest
magnetic field amplitude using this configuration. Permanent
magnets lose some of their magnetization at cryogenic tem-
peratures [76]; however, NdFeB magnets tend to lose no more
than 15%. The magnetic field created by a permanent magnet
with a cone shape has rotational symmetry around the axis.
As explained in Sec. V A, high-field-seeking atoms will be
focused toward the axis. The same effect will also deflect the
low-field-seeking atoms away from the axis, possibly reduc-
ing the intrabeam Zacharias effect due to asymmetry in the
velocity distribution. The details depend on the exact shape
of the magnetic field. As long as the atoms leave the nozzle
mostly as a forward-directed beam, the reorientation of the
velocity vector should not be the dominating effect. We ignore
any associated focusing or defocusing.

Higher magnetic fields, on the order of a few tesla, can
be achieved using superconducting magnets incorporated into
the nozzle. Even though the nozzle is cooled to 5 K, including
such an electromagnet is complicated, and even a field of 10 T
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would gain only one order of magnitude improvement. We are
not planning to use larger fields at this stage.

The escape velocity from the magnetic surface is ve =√
2μBB/m = 105 m/s. By integrating (1) from v = 0 to v =

ve, we conclude that the total atomic flux from the nozzle will
decrease by a negligible amount of 0.8%.

Due to the hyperfine splitting, we can only address one-
quarter of the atoms coming out of the nozzle with the
deflection beam discussed next. Addressing both high-field-
seeking states, F = 0, M = 0, and F = 1, M = −1, would
require a second laser frequency, further complicating the
experiment.

IV. BEAM DEFLECTION

After the nozzle, the atomic beam crosses a λ = 243-nm
laser beam at an angle θ0 as sketched in Fig. 2. We assume
that the geometry is arranged such that the deflection laser
crosses the trapping laser beam axis at a right angle, i.e., θ +
θ0 = 90◦. After absorbing two 243-nm photons, the atoms get
excited to the 2S state and deflect by an angle

θ = arcsin(vr/vs), (4)

where the recoil velocity is vr = 2h/(mλ) = 3.26 m/s. The
geometry is arranged so the deflected atoms center around the
z axis. The recoil shifts the velocity input to the trap:

vi =
√

v2
s − v2

r for vs > vr . (5)

We want to use vi = 3.8 m/s for trapping, that is, the vs = 5
m/s atoms from the nozzle. This implies a deflection angle of
θ = 41◦.

The deflection laser must be tuned to the Doppler-sensitive
1S-2S resonance that uses two photons from the negative
(positive) x axis. To meet the resonance condition, this laser
frequency needs to compensate for the Doppler and recoil
shift,

	νD = 2vs cos(θ0)/λ = 27 MHz, (6)

	νrec = 2h/(mλ2) = 13.4 MHz. (7)

To determine the efficiency of the deflection process, we as-
sume the 243-nm laser diameter covers the diameter of the
trapping laser at the crossing point. We assume the 243-nm
laser has a beam radius of w � rn = 0.5 mm along the y
direction. Note that the atomic beam does not need to cross the
243-nm laser at the beam waist position. Moreover, we would
prefer a small dn to have a large atomic flux and to reduce
the intrabeam Zacharias effect as detailed in Sec. III A. This
distance can be reduced to dn = 10 cm.

The deflection efficiency is obtained by solving the opti-
cal Bloch equations along the atomic trajectories [77] (see
Fig. 18). Figure 6 shows the corresponding numerical solu-
tion. The intensity should not be too high to limit ionization.
Under the above conditions, the optimum laser power is
around 5 W, which can be reached within an enhancement
resonator [78,79]. With this power, we obtain a deflection
efficiency of Pext = 12%.

To compute the trapping rate in Sec. VI C 1, we must de-
termine the flux of deflected 2S atoms through the trapping

FIG. 6. Solution of the optical Bloch equations for hydrogen
atoms moving at vs = 5 m/s across a 5-W, 243-nm laser beam
with a waist of w = 0.5 mm, intersecting the optical axis at an
angle θ = 41◦ as shown in Fig. 2. The red and blue curves show
the evolution of populations of the 2S state and the ionized state,
respectively, as a function of position along the atomic trajectory.
The time origin t = 0 corresponds to a position 1.5 mm upstream
from the optical axis. About Pext = 12% of the atoms end up in the
2S state, receiving a recoil of vr = 3.26 m/s. Thirty-six percent of the
incoming atoms get ionized with this setting. The laser detuning was
set to compensate for the light shift at the center of the laser beam
and the much smaller second-order Doppler shift. This is not exactly
the optimum detuning, but quite close. The gray curve sketches the
laser intensity (without scale) that peaks at around 31 MW/m2. The
inset shows the final 2S occupation, which peaks at a laser power of
around 5 W. More laser power would increase the number of ions
and reduce the number of deflected atoms.

region. The flux distribution from the nozzle has a characteris-
tic cos(ϑ ) distribution around its axis and is given in spherical
coordinates [68]:

f (ϑ, ϕ, v)dϑdϕdv = 2v3

πv4
0

e−v2/v2
0 cos(ϑ ) sin(ϑ )dϑdϕdv.

(8)

Only a small opening angle ϑmax, restricted by the geometry,
can be used:

∫ 2π

0

∫ ϑmax

0
f (v, ϕ, ϑ )dϑdϕ = 2v3

πv4
0

sin(ϑmax)2 e−v2/v2
0 dv.

(9)

This finite acceptance angle is set by the funneling of the
trapping laser, by the nozzle radius, and the distances dn and
dt . The latter has to accommodate the differential pumping
sections.

The remaining integral of (9) extends over the velocity. The
time of flight broadening [80] is of the order of a few kHz in
the geometry discussed here. So it is ineffective to address a
larger fraction of atoms via the Doppler shift (7). Instead a
range of incoming angles 	θ addresses a range of incoming
velocities 	vs:

	vs = vs tan(θ )	θ. (10)
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With that, we obtain the relative flux of atoms into the trap:

F� =
∫ vs+	vs

vs−	vs

2v3

πv4
0

sin(ϑmax)2 e−v2/v2
0 dv

≈ 4v3
s

πv4
0

sin(ϑmax)2e−v2
s /v2

0 	vs. (11)

V. TRANSPORT

Once the 243-nm laser beam has deflected the atoms, we
expect to obtain a beam with a very narrow velocity distri-
bution. If the apparatus is oriented vertically, then the beam
travels a distance dt = 30 cm against gravity as seen in Fig. 2,
such that the final velocity is given by:

vdt =
√

v2
i − 2gdt . (12)

An atom with an input velocity of 3.8 m/s would be slowed
down to 2.9 m/s without the potential of the trap.

A velocity-selected beam of metastable hydrogen could
also be very interesting for other future spectroscopy experi-
ments. The introduction of the first cryogenic hydrogen beam
[54] has greatly improved the precision of the measurement.
Further cooling of the atomic beam is expected to improve the
precision even further, especially for single-photon transitions
for which the Doppler effect remains a challenge [62,63].
While the beam described here is not being cooled (no en-
ergy is extracted from the system), the velocity distribution is
narrow due to spatial filtering. If we associate it with v2 − v2

from a three-dimensional Maxwell-Boltzmann distribution,
then we obtain a corresponding temperature of:

T ≈ πm

kB(3π − 8)
	v2. (13)

Using this relation, for the longitudinal velocity spread of
	vs ≈ 0.1 m/s, the characteristic temperature is ≈3 µK. This
number expresses the potential of the velocity selector and
should not be attached to any thermodynamic meaning.

A. Magnetic focusing

A hydrogen atom experiences a force due to the interaction
between a magnetic field gradient and its magnetic dipole
moment [81]:

�F = ±μB �∇| �B|. (14)

The magnitude of the magnetic field acts as a potential so that
the force is conservative. In an adiabatic quantum mechanical
situation, we have either a high-field or low-field-seeking state
(see Fig. 4). The single electron of the ground-state hydrogen
atom dominates the magnetic moment in (14).

An atom that passes through a spatially constant magnetic
field gradient perpendicular to the initial velocity of the atom
experiences an angular deflection. This deflection angle is
proportional to the time of flight through the magnetic field
gradient and, hence, inversely proportional to the velocity.
A rotational symmetric magnetic field magnitude is used to
focus an atomic beam. Such a field may be obtained with a
single coil, an anti-Helmholz coil pair, or a hexapole magnet.
Focusing takes place when the magnetic field gradient grows

linearly from the axis. The situation is exactly as in paraxial
optics, and the ABCD matrices can be used, except that the
focal length has a quadratic dependence on the longitudinal
velocity v. As an example, a hexapole magnet with a radius R
and length d that is carrying a current of I makes a lens with
a focal length [82]

f = πmR3

6μ0μBId
v2. (15)

For R = 3 cm, d = 2 cm, and I = 25 A, we get f = 335 m
for v = v0 = 287 m/s and f = 10 cm for v = 5 m/s. The fast
atoms essentially see no lens at all, while the slow atoms
focus at a reasonable distance. Such a lens could be included
between the nozzle and the deflection laser to increase the flux
into the trap.

The selection rules of two-photon transition between two
S states forbid 	M 
= 0 and 	F 
= 0 transitions [83]. This
implies that the deflection laser can only excite atoms from a
high-field-seeking state into another high-field-seeking state.
To transfer atoms to a low-field-seeking state, which can be fo-
cused using a magnetic lens [84], an extra spin-flip microwave
cavity [85,86] is required. However, implementing this could
complicate the apparatus.

B. Beam lifetime

1. Natural lifetime and quenching

Even though the natural lifetime of the 2S state is τ2S =
122 ms, about 48% of the atoms will decay on the way to the
trap center with the parameters that we have assumed. A stray
electric field will further reduce the lifetime of the 2S state by
mixing in the short-lived 2P state. Using perturbation theory,
the reduced lifetime is obtained as ((67.8) in Ref. [87] and
Sec. 4.4 in Ref. [88]):

τ2S (E ) =
(

E

47.5 kV/m

)−2

τ2P with τ2P = 1.6 ns. (16)

Even a moderate electric field of a few volts per centimeter
significantly reduces the lifetime of the 2S state. Since the
experiment is being done under UHV conditions, the vacuum
chamber already shields the atomic beam from stray electric
fields. Care must be taken when the atomic beam passes near a
surface, as patch charges may develop. This is highly relevant
for the differential pumping stage discussed in Sec. VI D. We
should be able to avoid most of these effects by making sure
the inside of the vacuum chamber is well conducting.

The 2S atoms may also be quenched to the 1S state by mov-
ing through a magnetic field. According to electromagnetism
of moving bodies, a moving atom in a magnetic field feels an
electric field,

�EB = �v × �B, (17)

where we assume v � c.
One source for a magnetic field would be the magnetic fo-

cusing lens described in Sec. V A. Taking exaggerated values
for the magnetic field of 10−2 T, the time-of-flight 1 s (much
longer compared to the natural lifetime of the 2S state), and
assuming that the field is uniform and perpendicular to the
movement direction of the atom, the population of the 2S state
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FIG. 7. Survival probability of a 2S hydrogen atom traveling
5 cm at 3.8 m/s in a hydrogen background gas at T = 300 K. For
the 2S atoms to reach the trapping area, it is essential to maintain
a low pressure of less than 10−6 mbar. We assume that the survival
coefficient is unity after the first differential pumping stage, where
the pressure is on the order of 10−8 mbar or lower.

is reduced by 0.08%. Hence, we assume that magnetic fields
do not significantly quench the slow 2S atomic beam.

2. Collisional lifetime

When colliding with the background gas at pressure P, the
1S-2S transition becomes broader because the lifetime of the
2S state shortens due to collisional quenching. This rate is
given by [73]

�c = 1.29388 ξ (6)
γ

P

m3/10(kBT )7/10
, (18)

where ξ (6)
γ = 3.072(196)×10−17 rad m12/5 s−2/5 for a colli-

sion with a ground-state hydrogen atom. As we do not know
the exact ratio of H to H2 in the background gas, we assume
for this consideration that the gas consists solely of hydrogen
atoms. This is because the cross section for an atom-atom
collision is significantly larger than that of an atom-molecule
collision [89]. Using this approximation will provide an upper
limit on the lifetime.

After deflection and excitation to the 2S state, described
in Sec. IV, the atoms travel a distance L ≈ 5 cm in the high-
pressure region before traversing the first differential pumping
stage. The survival coefficient of a 2S atom traveling at vi =
3.8 m/s is given by e−L�c/v . We assume that the background
gas is thermalized at T = 300 K and visualize this relation in
Fig. 7. The survival coefficient is 45% for 10−6 mbar, assumed
for our estimates, and 90% for 10−7 mbar. After the atom
passes the differential pumping tube, the pressure drops by
about three orders of magnitude, and the collisional decay rate
becomes negligible.

VI. THE OPTICAL DIPOLE TRAP

The optical dipole trap consists of a focused laser beam
(the trapping laser) that shifts the atomic energy levels via
the light-induced electric dipole moments. In leading order,
the potentials φ are given through the electric dipolar E1

polarizabilities α of the 1S and 2S states:

φ(1S)(�r) = α
(1S)
t It (�r), φ(2S)(�r) = α

(2S)
t It (�r). (19)

Here It (�r) is the intensity of the trapping laser. Lengthy but
analytic expressions for the coefficients as a function of the
laser wavelength are given in Ref. [22].1 The polarizabilities
are wavelength dependent. The trapping laser is set to the
magic wavelength [20], where the polarizabilities are nega-
tive and identical. For the 1S-2S clock transition, the longest
wavelength that fulfills this criterion has been determined to
be 514.646 nm [22] with:

αt = α
(1S)
t = α

(2S)
t = −2.21584×10−5 h

Hz

W/m2 . (20)

To be specific for the simulations that follow, we assume
that the trapping laser has a power of Pt = 1 kW and waist
radius of w0 = 50 µm (peak intensity 2.5×1011 W/m2). The
beam radius at the intersection with the deflection beam is
980 µm, which we believe is a good compromise between the
beam restrictions for differential pumping and a sufficiently
large collection angle. However, the final design might be
modified.

The corresponding potential depth φ0 (taken to be positive)
is 0.27 mK or 7.5 times the recoil energy of a trap photon. This
is a rather shallow trap but comparable to what is employed
in the most advanced strontium lattice clocks [90]. For the
latter, such potential is achieved with a laser intensity about
a factor 200 lower than for hydrogen (factor 25 for the Hg
lattice clock [91]). Experimentally, it is desirable to operate at
lower powers, which also reduces the main systematic effects
and line broadening (see Secs. VII B and VII C). Even though
powerful lasers are available at this wavelength as the second
harmonic of Yb-based fiber laser systems, it still seems nec-
essary to resonantly enhance the trapping laser light.

To load the trap, we use the velocity-selected metastable
2S beam described in the previous sections. As the dipole
potential is conservative, we require the atoms to dissipate
some energy inside the trap; otherwise, they will leave on
the other side. The dissipation is required to be active only
while the atom is inside the trap. Usually, this is done with
laser cooling, which would be difficult in the case of atomic
hydrogen. Instead, we rely on the photon recoil as the atoms
are quenched to the ground state through the interaction with
the trapping laser. This is possible with a metastable beam
and provides just the right amount of dissipation at the right
position. This loading mechanism is sketched in Fig. 8.

A. Quenching rate

We now discuss the setting without the additional quench-
ing laser tuned close to the Balmer-α transition (see Fig. 2).
There are four paths for quenching with the trapping laser, as

1Note that the sign of the hypergeometric function in (3a) in
Ref. [22] needs to be reversed.
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FIG. 8. Schematic of a single recoil trapping. In the 2S state,
a metastable atom with initial energy Ei = mv2

i /2 rolls into a po-
tential well with constant total energy (upper dashed line). Without
dissipation within the trap, the atom would fly out the other side.
The trapping laser potential, sketched with the purple line, mixes
the metastable 2S state with the short lived P levels, causing it to
decay (“quench”) to the 1S ground state. In some cases, the photon
recoil slows the atom down, so it will stay in the trap with final total
energy Ef < 0. This mechanism provides intrinsic overlap between
the dissipation and the trapping potential.

sketched in Fig. 9. The rates are linear in intensity and can be
computed with equation (D6) in Ref. [77]:2

�a = 1.50×10−9 s−1

W/m2 ×It , (21)

�b = 2.03×10−10 s−1

W/m2 ×It , (22)

�cS = 1.14×10−10 s−1

W/m2 ×It , (23)

�cD = 9.87×10−12 s−1

W/m2 ×It . (24)

We dropped the position dependence of the intensity for
simplicity. A value that combined all quenching paths has
been published in Ref. [47] and agrees with our values. The
dominant quench process (a) involves the absorption of a trap-
ping laser photon and a spontaneous emission of an extreme
ultraviolet photon at 98.3 nm. In quench process (b), a trap
laser photon is emitted, followed by a spontaneous 159-nm
photon. This process is somewhat suppressed due to not hav-
ing any close resonances. After the absorption of a trapping
laser photon in quench process (c), an infrared photon with a
wavelength of 2385 nm is emitted as the atom reaches either
the 3S or 3D state. The atom then decays to the 1S state via
the 2P state by emitting a 656-nm Balmer-α photon followed
by a 122-nm Lyman-α photon.

B. Favorable recoil fraction

A 2S atom that is deflected (launched) at position �ri (close
to the x axis in Fig. 2) with an initial velocity �vi and an initial
potential energy φ(2S)(�ri ) has a total initial energy of:

Ei = m

2
�v 2

i + φ(2S)(�ri). (25)

2Note that this equation has an extra factor of 4 and is missing
the time-reversed decay paths sketched in gray in Fig. 9. The results
presented here are corrected for these issues.

Just before quenching at position �rq, we can calculate the
magnitude of the velocity from the kinetic energy at this point:

v(�rq) =
√

2

m
(Ei − φ(2S)(�rq)). (26)

The quenching event changes the kinetic energy instanta-
neously, i.e., without changing the position of the atom to

Ekin(�rq) = m

2
(�v(�rq) + �vr )2, (27)

with the recoil due to the trapping laser and spontaneous
photon h̄�kl and h̄�ks respectively:

�vr = ± h̄�kl

m
− h̄�ks

m
. (28)

The sign of the laser photon momentum is positive for quench
processes (a) and (c) and negative for quench process (b). The
total energy of the atom just after quenching is therefore given
by:

E f = Ekin(�rq) + φ(1S)(�rq)

= m

2

(
�v(�rq) ± h̄�kl

m
− h̄�ks

m

)2

+ φ(1S)(�rq). (29)

To evaluate this expression, one may use the Monte Carlo
method that randomly selects for the direction of the spon-
taneous photon(s), that is, for the direction of �ks. The trapping
probability is the fraction of negative values for E f , while
the latter’s distribution yields the energy distribution of the
trapped atoms. This would be the more complete picture be-
cause it readily allows for including quench process (c) with
more than one spontaneous photon and nonisotropic dipole
emission. The drawback is that it is either slow or not very
accurate.

Instead, one may use an incomplete but analytic method.
With the trapping laser and spontaneous photon recoil ener-
gies El = (h̄kl )2/2m and Es = (h̄ks)2/2m we can rewrite (29)

E f = Ei + El + Es + 	φ(�rq) ± h̄ �kl · �v(�rq)

− h̄ �ks ·
(

�v(�rq) ± h̄

m
�kl

)
, (30)

with the potential difference 	φ(�rq) = φ(1S)(�rq) − φ(2S)(�rq).
The latter vanishes when the trap operates at the magic wave-
length. Again, the task is to find the condition for trapping,
i.e., when E f < 0. This expression can be written in terms of
the angle ε between �ks and �v(�rq) + (h̄/m) �kl :

E f = Ei + El + Es + 	φ(�rq) ± h̄ �kl · �v(�rq)

− h̄ ks

∣∣∣∣�v(�rq) ± h̄

m
�kl

∣∣∣∣ cos(ε). (31)

This gives a condition on ε for E f < 0. Assuming an isotropic
distribution of ε, we obtain the fraction of recoils that lead to
trapping:

Pε = 1

2
− Ei + El + Es + 	φ(�rq) ± h̄ �kl · �v(�rq)

2h̄ks|�v(�rq) ± (h̄/m) �kl |
. (32)
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FIG. 9. Decay paths that lead to “quenching” of the 2S state due to the trapping laser at 515 nm. In quench processes (a) and (c), the
trapping laser excites the 2S atoms to a virtual state (dashed) that decays to the 1S ground state by spontaneously emitting one or more
photons. Quench process (c) can be split into two separate processes, with different rates, where the intermediate states are 3S or 3D. These
processes are completed with the time-reversed path via other virtual states (shown in gray) that are below the ground state for (a). In quench
process (b), the trapping laser induces a stimulated photon first, which causes the recoil h̄�kl to flip sign in (28). The back decay to the 2S state
can be ignored here since this process does not lead to quenching (see Sec. VI D 2 for more details). Note that the spontaneous photons (wavy
lines) can only point down, whereas the laser photons (straight lines) can point up and down.

Using π -polarized trapping light leads to a nonisotropic dis-
tribution of ε, which can enhance the favorable recoil fraction
by up to a factor of three. However, this enhancement applies
only to very shallow trapping potentials and to atoms prop-
agating along the z axis. For the purposes of our estimation,
we adopt a more conservative assumption of an isotropic ε

distribution. For process (b), the trapping laser stimulates the
emission of a photon, flipping the sign of �kl relative to the
other processes. The fraction of favorable recoils is plotted
in Fig. 10 as a function of the input velocity for an ideal
trajectory.

It may be surprising that the counterpropagating trapping
laser leads to a lower fraction of favorable recoils for low
vi. However, it should be noted that a lower velocity before
the spontaneous emission does not necessarily lead to a larger
fraction. In the extreme case, an atom at rest in the trap center
before the emission of a high-energy photon will always be
ejected irrespective of the direction of this photon. It should
also be noted that larger trapping laser intensities lead to larger
cut-off velocities. The trap depth we have chosen for this
example is as low as possible but still has a useful trapping
probability.

A possible way to increase the trapping probability and
allow efficient trapping of higher velocities is to operate the
trapping laser at a nonmagic wavelength. Of course the devi-
ation from the magic wavelength can be tolerated only during
loading. The atoms must be transferred to a magic wavelength
trap for the subsequent clock operation. In this situation, the
2S atoms reaching the trap center do not accelerate as de-
scribed above; instead, they are slowed down as they climb
the potential hill. Once at the top of the hill, the chances for a
quench event are maximized. This dynamics is similar to the
well-known Sisyphus cooling [92]. A similar scheme uses the
Zeeman shift instead of the light shift to load an optical dipole

trap and achieve Bose-Einstein condensation, all without laser
cooling [93]. With the envisioned trapping laser parameters, a
2S atom entering with vi = 3.8 m/s along the z axis would

FIG. 10. Fraction of favorable recoils for atoms that quench at
the trap center with a trajectory along the z axis starting at infinity
with velocity vi (see Fig. 2). The trapping laser is assumed to be a
traveling wave counter- (solid) or copropagating (dashed) with the
atomic beam, tuned to the magic wavelengths with a power of Pt =
1 kW and a waist radius of w0 = 50 µm. Three quenching processes,
(a), (b), and (c), are distinguished (see Fig. 9). The favorable recoils
for (a) and (b) are equally well described by (29) and (30) while for
(c) it is determined with a Monte Carlo method using (29). Note that
the quench path with the largest rate (a) is not necessarily the one
with the largest fraction of favorable recoils. Process (b) does not
contribute to this particular trajectory with the given conditions, but
process (a), with the largest rate, peaks at the chosen input velocity.
These curves reach larger values and cut-off velocities with larger
laser intensives. However, this leads to a larger ionization rate and
not necessarily a larger trapping probability.
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be stopped at the trap center if the trapping laser would be
tuned to 518.818 nm, i.e., only 4.2 nm away from the magic
wavelength.

However, for the suggested geometry such “Sisyphus trap-
ping” would be helpful only for atoms that fly exactly on-axis.
The corresponding repulsive force deflects atoms not heading
toward the trap center. Hence, we would lose the funneling
action of the trapping laser, which reduces the overall loading
efficiency. A way around this would be to use a weak knife-
shaped laser beam close but blue detuned from the Balmer-α
2S-3P transition as sketched in Fig. 2. This is further discussed
in the next section.

C. Single recoil trapping

We solve the Newtonian equation of motion along with
the optical Bloch equations for an initial 2S state with the
potential in (19). For each point along the resulting trajectory,
the trapping and ionization probability is computed from the
instantaneous velocity and the atom’s internal state, which
gives the quenching probability. As shown later, the trapping
probability is almost three orders of magnitude lower than the
fraction of favorable recoils. Integrating over many trajecto-
ries gives the total trapping rate, the distribution of quenching
positions, and the distribution of the energy of the trapped
atoms.

To simulate the trapping dynamics, a set of decay constants
in addition to the quenching rates [(21)–(24)] is required.
These constants can be computed with almost arbitrary ac-
curacy for atomic hydrogen.

Even though one photon from the trapping laser does not
provide enough energy to reach the continuum from the 2S
state (λ < 356 nm required), two-photon ionization of the 2S
state is significant at high intensity with a rate of [60,61,94]:

�i,2S = 2.83×10−20 s−1

W2/m4 ×I2
t . (33)

As the two-photon ionization affects only the 2S state, it
strongly impacts the trapping procedure but does not limit the
trap lifetime once the atoms are in the ground state. However,
it broadens the 1S-2S clock transition by reducing the lifetime
of the excited state [47]. Since this rate is quadratic in inten-
sity, it may be reduced relative to the trap depth (see Sec. VII
for a discussion).

The natural (two-photon) decay of the 2S state has a rate of
[95]:

�2S = 8.229062 s−1. (34)

However, the trapping process discussed in this work may take
≈100 ms so that it becomes comparable to the natural lifetime
1/�2S of the 2S state. We assume that atoms that decay via the
natural decay path are lost and cannot be trapped.

1. Monte Carlo simulation of atom capturing

With the quasitemperature given in (13) and the parame-
ters used in this proposal, the thermal de Broglie wavelength
is around 1 µm. The atoms are sufficiently localized for a
traveling-wave trapping laser beam to be treated with classical
trajectories for the required accuracy. We may expect some
quantum corrections to the trapping probability with a stand-

ing wave laser. Another source of delocalization would be
superpositions where the ground and the excited states sepa-
rate by a photon recoil (see discussion in Ref. [96]). However,
superpositions of this type do not occur in the modeling of the
loading procedure described here.

After the atoms are deflected by absorbing two 243-nm
photons, some of them are guided by the trapping laser until
they absorb or emit a directed photon recoil momentum h̄�kl

from that laser. This recoil is followed by one of the sponta-
neous processes sketched in Fig. 9. Some of those recoils lead
to trapping. The main advantage of the classical trajectory
is that the recoils can readily be included in a Monte Carlo
method. For this purpose, a numerical solution of the Newto-
nian trajectory with the potentials given in (19) is generated.
In each time step, the trapping probability is determined either
by (32) for processes (a) and (b) or by randomly selecting one
or three recoils that make up h̄�ks to include process (c) in (29).
For completeness, we use the latter method. This is continued
for all time steps of the given trajectory to determine its overall
trapping probability. A full Monte Carlo simulation is then
performed by averaging many trajectories drawn from the
distribution (8) and averaging over the initial positions within
the nozzle orifice.

We investigate two settings where a traveling-wave trap-
ping laser propagates in the negative z direction, both with
and without the quenching laser. We assume the trapping
laser to be tuned to the magic wavelength with a power of
Pt = 1 kW and a waist radius of w0 = 50 µm. The distance
from the trap center is assumed to be dt = 30 cm which
implies a radius of the trapping laser funnel at the origin
of w(dt ) = w0

√
1 + (dt/zR)2 = 985 µm (see Fig. 2 for the

geometry). This is the setting that we currently envision.
The second setting includes the quenching laser with an

intensity of I0q = 104 W/m2 blue detuned from the 2S–3P
transition by δ = +1 GHz and with a beam radius of w0q =
50 µm. The laser is a traveling wave along the x direction.
This requires only a moderate power of 25 µW if only the
cross section of the trapping laser is covered. For an easier
alignment, using a much larger beam radius in the perpendic-
ular direction (“knife” shape) with a larger power requirement
would be advisable. With the quenching laser present, another
photon recoil must be considered. In this setting, the power
of the 515-nm trapping laser is reduced to 100 W. All other
parameters are identical to the first setting. More details and
the rest of the required parameters to run the Monte Carlo
simulations are given in Appendix A 1.

To estimate the acceptance angle of the funnel provided by
the trapping laser, we simulate a set of trajectories in the x-z
plane with different input angles. The result of Fig. 11 shows
that an upper limit of the acceptance angle is ϑmax ≈ 1.5◦
for the setting with the strong trapping laser and without the
quenching laser. The limiting case is a pointlike source of
atoms right on the axis of the trapping laser. The funneling
radius is roughly given by the radius of the trapping laser
(about 1 mm) at the launch point, i.e., the intersection with
the deflection laser. Moving the source off the center reduces
the acceptance angle. The setting with the lower trapping laser
power and the quenching laser experiences a reduction of the
maximum acceptance angle by about a factor of 3, which
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FIG. 11. Monte Carlo simulation to determine the trapping
probability. The atoms are launched with vi = 3.8 m/s from
the origin (0, 0, 0) (green) and from a point displaced by
	x = 800 µm (800 µm, 0, 0) (red) at different angles 	θ using the
coordinates system in Fig. 2. The solid curves correspond to Pt =
1 kW without the quenching laser and the light curves to Pt = 100 W
with the quenching laser present. Each of the 200 data points of each
curve in this plot belongs to a single Newtonian trajectory along
which the trapping probability is determined with 106 atoms. The
oscillations seen in the light curves are not caused by numerical
noise. Rather, they are caused by a well-defined quenching point
combined with the oscillatory motion of the atoms as they funnel into
the trap. Because of the rotational symmetry, the same conclusion can
be drawn for an angle in the y/z plane.

reduces the solid angle by about an order of magnitude. The
power of the quenching laser seems irrelevant as long as it
is around or above the chosen value. In all those cases, the
atoms are almost completely quenched before they reach the
intensity peak.

To verify that the chosen power levels are reasonable, we
ran a full Monte Carlo simulation where we averaged over
a set of source points related to the surface of the nozzle
orifice as described in Appendix A 1. We draw trajectories
from the distribution (8) for each point but with a fixed magni-
tude v = vi = 3.8 m/s. We further restrict this distribution to
ϑmax < 1.5◦ to speed up the simulation. This restricting angle
was picked in accordance with the estimated funneling effect
in Fig. 11 (solid curves) and the somewhat larger geometrical
restriction of (Rn + w(dt ))/dn = 0.85◦ with the funnel radius
w(dt ) = 985 µm at the crossing of the deflection and trapping
laser and the nozzle radius Rn = 0.5 mm. The actual value of
this cut-off angle is irrelevant as long as it includes all tra-
jectories that could be trapped and with a properly normalized
trapping probability. The result is shown in Fig. 12 and reveals
that the loading rate is well saturated at a trapping laser power
of 1 kW. Two-photon ionization of the 2S state by the 515-nm
trapping laser dominates for all laser powers. Introducing the
quenching laser (light curves) does not improve the trapping
probability for large trapping laser powers. However, it allows
for the reduction of the trapping laser power. Comparing the
two settings, it is seen that the second one has almost an order
of magnitude lower trapping probability in agreement with
Fig. 11. Lower trapping laser intensity is required with the
quenching laser present because it would otherwise quickly
ionize the 3P level with just one photon (see Appendix A 1).

FIG. 12. A full Monte Carlo simulation was performed to deter-
mine the trapping and ionization probabilities. This simulation used
104 trajectories, each of which was discretized with an average of 104

points (with an adaptive step size). Additionally, 104 random photon
momenta were employed to determine the trapping probability at
each of these points. The selected initial velocity is vi = 3.8 m/s.
The solid curves correspond to Pt = 1 kW without the quenching
laser and the light curves to Pt = 100 W with the quenching laser
present. The trapping probabilities relative to the chosen solid angle
ϑ2

max, saturate at around 3.0×10−4 for large trapping laser powers.
Atoms that are neither loaded nor ionized are the ones that miss
the funnel. The capture probability does not drop significantly even
for very large laser powers because, in this case, quenching occurs
prematurely at the fringes of the laser intensity before the atoms
ionize. Note that the probabilities in this plot are relative to the
fraction of atoms that make it into the chosen solid angle and cannot
directly be compared with the ones given in Fig. 11.

From the same simulations, we determine the quenching
positions, trapping positions, and the trapped atoms’ energy
distribution. These results are shown in Figs. 13, 14, and 15.
These figures show only the results for the first configuration
without the additional quenching laser. The y axis shows the
raw number of counts per bin from a sample of approximately
108 events (104 trajectories with around 104 points each).
These plots are not meant to show total trapping probabilities,
as in Fig. 12, but rather the spatial and energy distribution.

As expected, Fig. 13 shows that process (a) is the dom-
inating quenching mechanism. Ionized atoms are not shown
in this figure. With the lower trapping laser power and the
quenching laser present, the contributions of the quenching
processes of Fig. 9 are negligible. Instead, the atoms quench
and get trapped about one beam radius before the intensity
peak of the quenching laser (at z = 0) with a width that is also
given roughly by the beam radius.

When one examines Fig. 14, it is clear that only quenching
event close to the center of the trap leads to trapping. Only
processes (a) and (c) lead to trapping as expected from Fig. 10.
The large tail, extending to the left in Fig. 13, comprises atoms
that prematurely quenched, some due to the natural lifetime
and most due to the trapping laser. Using a smaller focus of
the trapping laser leads to a more localized quenching position
at the expense of a reduction in the capture angle (see Fig. 11).

The random nature of spontaneous emission leads to an
energy distribution of the atoms inside the trap, presented
in Fig. 15. Our simulation shows the distribution to be
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FIG. 13. Same Monte Carlo simulation as in Fig. 12 but with
a fixed laser power of Pt = 1 kW and without the quenching laser
showing the z positions where the atoms are quenched (but not
necessarily get trapped). Three quenching processes, (a), (b), and
(c), are distinguished (see Fig. 9). The atoms are coming in from
the negative z axis. The Rayleigh range of the trapping laser is zR =
1.5 cm. At higher intensities, the atoms are predominantly quenched
before reaching the trap’s center, where the ionization rate is largest.
Premature quenching leads to a higher mean energy (temperature) of
the trapped atoms (see Fig. 15) because trapping occurs close to the
upper rim of the potential well and away from the trap center. With
the quenching laser, this distribution is close to a δ function and is
not shown here.

concentrated close to the upper rim of the potential. Since
this is not a thermal distribution, temperature is not well
defined; however, we could look at a Boltzmann distribution
with the same average energy, 〈E〉 = 0.77φ0 = kBT . Such a
distribution would have a temperature of 0.21 mK.

We use (11) to determine the relative flux that enters the
full Monte Carlo simulation to determine the overall trapping
probability. Clearly, ϑmax should be the same as in the sim-

FIG. 14. Same Monte Carlo simulation as in Fig. 13 showing
the z positions where the atoms get trapped. With a traveling wave
trapping laser, the atoms can move along the z axis roughly within a
few Rayleigh ranges of zR = 1.5 cm. With a standing wave trapping
laser, we would fill the lattice around 1 cm before the waist. With the
quenching laser and reduced power, this distribution is very narrow
at about the size of the beam radius of the quenching laser, i.e., 50 µm
FWHM in the current case.

FIG. 15. Same Monte Carlo simulation as in Fig. 13 showing the
energies of the trapped atoms in units of the trap depth. While the
atoms quench via all three paths (a), (b), and (c) (see Fig. 9), only
(a) and (c) contribute to trapping with vi = 3.8 m/s (see Fig. 10).
The photon-recoil-assisted trapping places the atoms predominantly
at higher energies close to the upper rim of the potential because
there is no other dissipation besides quenching of the 2S state. This
is more so for higher trapping laser powers because the loading
predominantly occurs outside the trap center. Evaporative cooling
may occur as discussed in Sec. VI F, removing the higher energetic
atoms while reducing the energy of the atomic ensemble, reaching a
Boltzmann distribution. Assuming the atom number and average en-
ergy of 0.77φ0 remains the same during thermalization, the resulting
temperature would be 0.21 mK.

ulation. In addition, we need to estimate the velocity slice
that enters the laser funnel. For this we use (10) and identify
	θ with the acceptance angle, i.e., 	θ = ϑmax. We use the
Monte Carlo simulation to verify this estimation. This gives
the span of the deflected atoms around vs = 5 m/s, selected
by the deflection, 	vs = 0.11 m/s, and the relative flux of
F� = 1.76×10−12. The latter needs to be multiplied by the
trapping probability. Note that a larger 	θ would increase the
former and reduce the latter.

As a third setting we consider a much tighter waist of the
trapping laser. This would allow us to dramatically reduce the
required trapping laser power while maintaining the intensity
and the trap depth. The main issue with this setting is that it
reduces the funnel acceptance angle because both the beam
divergence increases and the power reduces, as well as the
trapping probability for those atoms that get funneled. This
prevents loading a large number of atoms into such a tweezer
trap [47,97,98] with our loading scheme, at least if one re-
quires a distance dt = 30 cm to fit in the differential pumping
section. On the other hand, the idea of the tweezer clock is
to have only one atom in the tweezer to reduce collisional
shifts. As a specific example, we consider a trapping laser
with a 10 times smaller waist radius of w0 = 5 µm and three
orders of magnitude lower trapping laser power of Pt = 1 W
completed with a quenching laser with the parameters of the
second setting above. Performing the same simulations, we
find that the trapping probability reduces to 1.3×10−8, i.e.,
by four orders of magnitude relative to the same cut-off angle
ϑmax for the distribution (8). Even though the acceptance angle
of the funnel reduces to about 	θ ≈ 0.005◦ this does not
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reduce the addressable velocity slice in (11) because the finite
radius of the nozzle allows to compensate the angle mismatch.
Hence we expect the tweezer loading rate to be around four
orders of magnitude lower than for the first setting. Without
the quenching laser, one would require at least Pt = 10 W to
achieve a comparable loading rate. Unless one finds a way
to reduce the distance dt = 30 cm without compromising the
differential pumping, this setting may only trap an individual
atom at most.

Modeling a standing-wave trapping laser is numerically
expensive. However, it describes an important case where the
trapping laser is enhanced in a standing wave resonator. We
find only small deviations from the traveling wave case by
simulating a few representative trajectories within the classi-
cal approximation. The moving atoms efficiently average over
the nodes and antinodes of the standing wave. With an identi-
cal spatially averaged laser intensity, we almost get the same
loading dynamics. The only notable difference is that trapping
laser photons can be absorbed and emitted in both directions
and that the trapped atoms are prevented from moving along
the longitudinal trap axis. This localization could be important
for evaporative cooling, as discussed in Sec. VI F. Apart from
this localization, the standing wave laser may be advantageous
as it reduces the required power from the trapping laser. Even
with a simple back-reflecting mirror, the spatially averaged
intensity doubles.

One may introduce an additional hollow-core guiding laser
that runs collinearly with the trapping laser, red-detuned from
the magic wavelength to increase the collection efficiency
further. This laser could have a tighter waist and a larger
funnel opening. Approaching the Balmer-α line at 656 nm
from the blue side, the dipole force on the 2S atoms could
easily be five orders of magnitude larger, which means a few
milliwatts of power for the hollow core guiding laser would
be sufficient.

D. Trap lifetime

1. Background pressure collision

Trap losses are dominated by the collision of trapped
atomic hydrogen with the room-temperature background gas.
The trap lifetime is given by [99]

1

τc
=

(
450 π5C2

6

φ0m3k4
BT 4

)1/6

�

(
11

6

)
PH2 , (35)

with the gamma function �(11/6) = 0.94 . . ., the background
pressure and temperature of molecular hydrogen PH2 (in pas-
cals) and T = 300 K, the trap potential depth φ0 and the
van der Waals interactions coefficient C6 = 8.7a6

0Eh [74]. We
assume here that the background gas contains only molecular
hydrogen and approximate the mass of a hydrogen molecule
to be twice that of a hydrogen atom. Note that while the trap’s
lifetime depends on the trap depth, the dependency is very
weak (sixth root). Equation (35) is plotted in Fig. 16 for the
envisioned trap depth using 1 kW.

The nozzle in the first vacuum chamber, as seen in Fig. 2,
introduces a large amount of hydrogen into the system. Due
to its low mass, H2 is difficult to pump using turbomolecular
pumps. Getter pumps have high pumping speeds for hydro-

FIG. 16. According to (35), the lifetime of a hydrogen dipole trap
with an intensity of 2.5×1011 W/m2 is τc. In order to accurately
measure the 1.3 Hz linewidth of the 1S-2S transition, a background
pressure of better than 10−8 mbar is required.

gen; however, they saturate very quickly under heavy gas
loads. Achieving a background pressure of less than 10−9

mbar is challenging under these conditions. In our previous
experiments with a similar setup [8], a background pressure of
10−5 mbar was achieved in the beam chamber using a 500 l/s
turbomolecular pump. Two stages of differential pumping are
implemented in our system as depicted in Fig. 2, each should
provide three orders of magnitude reduction in the pressure
such that the planned base pressure is 10−11 mbar.

Even at such a low pressure, the flux from the velocity
selected beam, as estimated in Sec. IV, is several orders of
magnitude lower than the flux from the background gas as
obtained from the flux density of an ideal gas P/

√
2πmkBT .

Moreover, the beam comes at a very low velocity and can be
shut off by turning off the deflection laser.

2. Rayleigh scattering of trapping laser light

Off-resonance Rayleigh scattering of trapping laser pho-
tons leads to the heating of the trapped atoms. We can
get an accurate number by realizing that Rayleigh scatter-
ing is nothing but the quench rate discussed in Sec. VI A.
To compute the scattering rate for the 1S ground state, we
consider a process similar to Fig. 9(a) with the 2S level re-
placed with the 1S level, where the initial and final states
are identical. Using the same formalism (see footnote 2),
we obtain �a = 2.37×10−13 s−1/(W/m2) which translates to
�

(1S)
Ray = 0.059 s−1. Along the same line, we can determine

the Rayleigh scattering of the 2S state through (21). Since
Rayleigh scattering and the light shift are described by the
same matrix elements, at the magic wavelength the scattering
rate for the 1S and the 2S are identical, �

(2S)
Ray = �

(1S)
Ray .

Under the envisioned conditions of the first setting (without
the Balmer-α quench laser), a single recoil from the trapping
laser increases the energy of a stored atom by 0.13 φ0. It kicks
out only the atoms stored close to the upper rim of the trapping
potential (see Fig. 15). The atoms that stay trapped get heated
according to dT/dt = (2Erec)/(3kB)�Ray = 0.7 µK/s. This is
slow enough to provide robust trapping for a sufficient storage
time.
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TABLE I. The trap gain is given by multiplying the total effi-
ciency with the total initial flux of an estimated f0 = 1018 atoms/s.
The trapping probability is given for the first setting of Sec. VI C 1
with a trapping laser of Pt = 1 kW with a waist radius of w0 = 50 µm
and a selected velocity from the nozzle of vs = 5 m/s. (*) The natural
lifetime of the 2S state is already included in the full Monte Carlo
simulation for F�, so it is left out of the total efficiency.

Trap gain, G

Channel Efficiency Reference

Magnetic slowing 7.6×103 Figure 5
Zacharias effect 0.4 Figure 3
1S-2S excitation 0.12 Section IV
Velocity and solid angle F� = 1.76×10−12 Section VI C 1
Hyperfine distribution 0.25 Section III B
Natural lifetime∗ 0.52 Section V B 1
Collisional lifetime 0.45 Section V B 2
Trapping probability 3.0×10−4 Figure 12

Total efficiency 2×10−14

Operating the trap with a standing wave, one might ex-
pect that photon momenta can be redistributed by stimulated
scattering, a process that can lead to Bloch oscillations [100].
However, this process cannot simultaneously obey momen-
tum and energy conservation in a standing wave. Hence, we
ignore this type of scattering.

3. Recombination

Atomic hydrogen recombines to molecules at almost all
surfaces except liquid helium [101]. Obviously, this problem
is absent in an optical dipole trap. However, collisions within
the gas may also lead to recombination. The exponential loss
of trapped atoms with a time constant of 1.5 s for a 270-mK
sample with a density of at least 1.8×1020/m3 has been mea-
sured in Ref. [101]. Expected densities and temperatures here
should be considerably lower.

The same work finds an essentially infinite lifetime for a
spin-polarized sample like the one planned for our experi-
ment. Spin polarization of the atomic sample can be achieve
using σ−-polarized trapping light and using the F = 1,
M = −1 high-field seeking state. This selective decay path
confines the population to a single magnetic sublevel. Once
established, polarization is preserved by a weak magnetic
field, which provides a sufficient quantization axis to prevent
mixing between sublevels.

E. Steady-state number of trapped atoms

The steady-state number of trapped atoms depends on the
flux through the trap, the trapping probability, and the loss
rate from the trap. These factors have been modeled in the
preceding sections. The flux through the trap and trapping
probability can be combined into a single gain parameter, G.
The estimation of this parameter is summarized in Table I.
While the total efficiency may be small, we hope to be able to
compensate with a large initial flux of atoms.

The steady-state number of atoms in the trap, N , is given
by the solution to the rate equation

Ṅ (t ) = G − N (t )/τtrap ⇒ N (t ) = Gτtrap(1 − e−t/τtrap ). (36)

Assuming total flux f0 ≈ 1018 atoms/s, the expected gain is
G = 2×104 atoms/s. The loss rate, 1/τtrap, is estimated in Sec.
VI D. From Fig. 16 we read τtrap = τc = 10 s at a background
pressure of 10−9 mbar. We conclude that the steady-state
number of atoms is on the order of a 2×105 atoms after a
loading time of about 10 s. This is a typical value for an optical
lattice clock. Obviously, the largest reduction factor in the trap
gain is the velocity and angular selection given in (11). This
is the reason why the funneling action of the trapping laser is
essential.

An important enhancement in these estimations is the mag-
netic slowing inside the nozzle. Further optimization of the
parameters used here is conceivable. For example, the number
of trapped atoms is inversely proportional to the background
pressure, but of course, that also increases the loading time.
Employing the quenching laser with a reduced trapping laser
power (second setting), we estimate that the loading rate and,
therefore, the steady-state trapped atoms reduce by an order
of magnitude (see Figs. 11 and 12).

For the tweezer arrangement, as discussed in Sec. VI C 1,
we expect to have four orders of magnitude lower loading rate,
which reduces the loading rate to about two atoms per second.
However, the purpose of the tweezer is to have at most one
atom in the trap to avoid collisional shifts, as discussed in
Sec. VII C. Meanwhile, large arrays with thousands of tweez-
ers have been demonstrated to compensate for the increased
statistical uncertainty [102]. Unfortunately, the hydrogen case
would require kilowatts of trapping laser power.

F. Cooling

Even though the 1S-2S transition is free of the first-order
Doppler shift, the second-order Doppler shift might become
a limiting factor for subsequent precision spectroscopy. With
a trapping laser power of 1 kW and waist radius of w0 =
50 µm, the trapped atoms have a maximum velocity of vmax =√

2φ0/m = 2.1 m/s. This gives rise to a relative SOD shift of
−(1/2)(vmax/c)2 = −2.5×10−17 (see also Sec. VII B). Fur-
ther cooling may not be required but might take place by itself.

Right after trapping, we expect a distribution of ener-
gies as shown in Fig. 15. Thermalization will take place
by evaporating the many atoms caught close to the trapping
potential’s upper rim while reducing the remaining atoms’
energy. This initial evaporative cooling [103] will occur even
without ramping down the trapping potential. An important
quantity is the thermalization time [104]

τth = 23/2(ρσ v̄r )−1, (37)

with the atomic density ρ, the collisional cross section σ , and
the average relative speed v̄r = 2

√
2/πv0 [see (1)]. Due to

the low atomic density (≈5×1014 atoms/m3) and the anoma-
lously small s-wave scattering length of atomic hydrogen
(as = 0.4a0 for the singlet and at = 1.91a0 for the triplet
scattering [105]), the thermalization time is on the order of
15 s. This seems impractical for efficient evaporative cooling.

VII. SPECTROSCOPY

A. Detecting the clock transition

The laser to probe the 1S-2S clock transition (not shown
in Fig. 2) could be the same as the 243-nm deflection laser,
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although with different requirements. The deflection laser
must provide large power but only has moderate linewidth
and stability requirements. For the probe laser, the situation is
reversed. Nevertheless, employing one laser for both purposes
seems feasible when bridging the Doppler shift and recoil de-
tuning of the deflection laser with an acousto-optic modulator.
This can be seen as an advantage of the hydrogen clock.

The orientation of the probe laser beam in relation to
the trap laser can be configured either collinearly or per-
pendicularly. A collinear arrangement, where both beams
share the same optical axis, presents an experimental chal-
lenge, primarily due to the need for an optical cavity that
can simultaneously support the trap laser while avoiding
residual etaloning of the probe laser. Alternatively, a perpen-
dicular configuration simplifies the cavity requirements but
introduces its own complications: To minimize time-of-flight
broadening effects, the probe beam must have a sufficiently
large diameter [106]. Moreover, this geometry does not take
advantage of the strong axial confinement provided by the
standing wave of the trap laser.

The simplest method to detect the 1S-2S transition is to
detect protons or electrons generated as the 2S state is ionized
with a third laser photon at 243 nm. Charged particles can
be detected with very good efficiency and low background,
for example, with an electron multiplier. Unfortunately, this
detection scheme is destructive, so repeated reloading of the
trap is required. On the other hand, the proposed scheme al-
lows for continuous loading and probing, potentially avoiding
the Dick effect [107] that is present in pulsed atomic clocks.
As mentioned in the Introduction, fluctuations of the hydrogen
from the nozzle and deflection laser power can be normalized
by using the reverse Doppler-sensitive deflected 2S atoms.
This is essential to suppress noise in a continuous operation
mode.

B. Expected line shape

With the current atomic beam experiments [3], the smallest
observable linewidth of the 1S-2S clock transition has been
about 1 kHz, i.e., about three orders of magnitude larger than
the natural linewidth of 1.3 Hz. We can get closer to this limit
or even surpass it with trapped atoms.

The loading mechanism has been described in Sec. VI C by
solving the classical Newton’s equations of motion. The state
of the stored atoms needs to be treated quantum mechanically
to understand the details of the observed line shape.

Approximating the potential minimum with a quadratic
function, the vibrational frequencies are given by [108]

�t = 1

L

√
2φ0

m
(38)

with the depth of the potential φ0 as treated in Sec. VI and
the length scale L. The latter is given by L = w0/

√
2 for the

radial vibration and by L = λ/2π in the axial direction when
a standing wave is employed, resulting in �t = 2π×9.4 kHz
and �t = 2π×4.1 MHz respectively for our conditions. In the
case of a traveling wave trap, the length scale would be the
much larger Rayleigh length. Dividing the trap depth by these
vibrational frequencies, we obtain the number of supported
modes of atomic motion. For our envisioned parameters, this

results in about n ≈ 590 modes radially and n ≈ 105 modes
in the axial direction in the case of a traveling wave. Only the
axial vibrations for the standing wave case are in the quantum
regime with only about n ≈ 1.4 supported modes.

It is important to note that the Doppler-free two-photon
transition makes this situation quite different from the usual
optical lattice clocks. No Doppler shift in first order occurs,
and the probed atoms do not receive a recoil from the exciting
laser. The transitions are limited to 	n = 0 in first order [47].
It is rather irrelevant whether or not the trap is in the Lamb-
Dicke regime and, hence, does not need to be a standing wave
lattice.

The second-order Doppler shift, however, leads to a tiny
line-shape asymmetry as the vibrational modes impose side-
bands only on the red side of the main lines that are shifted
by [47]

	 f

f
= − h̄�t

4mc2
(2n + 1) (39)

in relative units. The relative intensity of these sidebands is
of the next order in the Lamb-Dicke parameter (see Ref.
[47] for details). The second-order asymmetry is obtained
through h̄�t n = kBT in the fully thermalized case. With the
temperature of the initial sample of 0.21 mK (see Fig. 15), this
results in a fractional asymmetry of 9.6×10−18. Therefore, the
second-order Doppler sidebands will be covered by the natural
linewidth at least.

The observational linewidth is expected to be larger. Two-
photon ionization by the trapping laser can severely limit
the 2S lifetime and broaden the clock transition. With the
envisioned trapping laser intensity of It = 2.5×1011 W/m2

and (33) we obtain a linewidth of �i,2S/2π = 282 Hz. To
mitigate this effect, we may assume that the trapping laser
power is reduced after loading or by operating the trap at a
lower intensity, as discussed in Sec. VI C 1. Thanks to the
quadratic dependence, reducing the laser intensity by one
order of magnitude brings the linewidth to the Hz level, i.e.,
close to the natural linewidth.

Rayleigh scattering and the associated decay through spon-
taneous photons and atomic recoils may also contribute to the
linewidth. As discussed in Sec. VI D 2, the rates are below the
Hz level, especially for the reduced trapping laser intensity.

Blackbody-radiation induced width is calculated to be
3×10−3 Hz [109] or 1.2×10−18 in relative units.

Another line-broadening mechanism is due to power
broadening. The resulting linewidth is roughly given by
the two-photon Rabi frequency [77]. To reach a hertz-level
linewidth, one needs to reduce the intensity of the clock laser
accordingly. A hertz-level Rabi frequency is a typical opera-
tion mode of an optical clock.

C. Expected clock uncertainties

The main motivation to store atomic hydrogen in a magic
wavelength optical trap is to eliminate the systematic uncer-
tainties that dominate the current atomic beam experiments
operating at T ≈ 5 K, namely the light shift and the second-
order Doppler shift [3].

Using the mean-squared velocity 〈v2〉 = (3/2)v2
0 =

3kBT/m of a thermal beam at T = 5 K obtained with (1),
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the second-order Doppler shift amounts to −(1/2)〈v2〉/
c2 ≈ 5×10−13 in relative units. Typically, one can model this
shift within a 1% accuracy to obtain a relative accuracy of
around 5×10−15.

With an isotropic Maxwellian distribution of a trapped
atomic sample, the mean-squared velocity is given by the
same expression but with a much lower temperature. The
second-order Doppler shift is roughly given by the second-
order Doppler line asymmetry estimated in the previous
section to 10−17 in relative units. Again, we expect to be
able to model this shift within the percentage level to get
the second-order Doppler shift under control within a relative
uncertainty of 10−19. Additional cooling would further reduce
the second-order Doppler shift. Another possibility is to apply
a magnetic field (that may also be useful for evaporative
cooling) to invoke a motional Stark effect that may partially
compensate the second-order Doppler shift [110].

The light shift due to the probe laser is intrinsically large
for the two-photon 1S–2S transition because it is driven
off-resonant and requires large laser intensities. The short
interrogation time in an atomic beam experiment (on the or-
der of ms) requires even larger laser intensities to excite the
atoms. With a probe laser intensity of Ip, the two-photon Rabi
frequency is given by �R = 2π×7.36222×10−5 Hz/(W/m2)
Ip [77]. With trapped atoms, we can set �R to a small value
limited by the trap lifetime. With a laser power of 53 µW and
a waist radius of 50 µm, the Rabi frequency is about 1 Hz.
This results in an light shift of the same order, i.e., 0.36 Hz
[77],3 or a relative shift of 1.5×10−16. Again, there is room
for improvements with an even lower probe laser intensity,
modeling, and extrapolating to zero probe laser intensity.

With the atoms trapped, we no longer consider the second-
order Doppler and the probe light shift the limiting systematic
shift. Moreover, the longer interaction time and the small Rabi
frequency reduce power broadening. Hence, trapped atomic
hydrogen will solve several problems at once.

The two-photon selection rule is 	M = 0 for any polariza-
tion. With the Breit-Rabi formula that was used to generate
Fig. 4, one finds the M = ±1 components to be independent
of external magnetic fields, at least when the identical Landé
g-factors of the 1S and 2S are used. However, a relativistic
correction to the g-factors of α/3n2 (α being the fine-structure
constant) leads to a splitting between the M = +1 and M =
−1 components of 37 Hz/Gauss (see the supplement of Ref.
[8]). We may pump the atoms into a single Zeeman sublevel or
apply a small bias magnetic field to shift the sensitive M = 0
out of resonance by employing its quadratic 9.6-kHz/Gauss2

Zeeman shift. This would require a small magnetic field below
35 mGauss to keep the splitting between the M = +1 and
M = −1 components below the natural linewidth. Stabiliza-
tion of the magnetic field to 0.1% would then reduce the
uncertainty to below 10−18. Employing the motional Stark
effect to cancel the second-order Doppler shift [110] does re-
quire a much larger field, and hence the M = +1 and M = −1
components separate and would have to be averaged. The

3We measure shifts at the atomic frequency, not at the laser fre-
quency.

Zeeman effect can be suppressed to much better than the hertz
level.

For small fields, the dc Stark shift of the 1S–2S clock
transition is quadratic in the electric field strength E and given
by 0.36 E2 Hz (m/V)2 [55]. It should be possible to shield
stray fields to better than 1 V/m [3] and passively reduce the
dc Stark shift below the hertz level. We can use the quadratic
dependence on the external field to reduce this shift further.
The vertex of the parabola describes the observed clock transi-
tion frequency as a function of a variable applied electric field,
which gives both the unperturbed clock transition frequency
and the stray electric field in the direction of the applied field.
This method has been used in all three dimensions in the
previous beam experiments [8].

The pressure shift of the 1S-2S clock transition has
been determined experimentally at large pressures to
−4.14(36) MHz/mbar with a H2 molecular background
gas [111]. A comparable value has been obtained as
−3.8(0.8)×10−16ρ Hz m3 at lower pressure in an environ-
ment of cryogenic spin-polarized atomic hydrogen with a
density ρ [112]. We use the former value to estimate the
pressure shift in the millihertz regime due to the molec-
ular background gas. Assuming a density of ρ = 5×1014

atoms/m3 of trapped spin-polarized atoms as in Sec. VI F,
we use the latter number to estimate a 10-mHz level collision
shift due to the trapped atoms. This shift may be reduced by a
larger trapping volume or traded for statistics by reducing the
number of trapped atoms. Eventually, trapping in a 3D lattice
or a tweezer array could further reduce the collision shift.

The light shift due to the blackbody radiation of the en-
vironment has been calculated in Ref. [113] to −1.036 Hz
at T = 300 K for the hyperfine centroid of the 1S-2S clock
transition. The blackbody shift scales with the total power of
the blackbody radiation as T 4, given by the Stefan-Boltzmann
law. Knowing the temperature of the environment within 1 K
reduces the uncertainty of the blackbody shift of the centroid
to 14 mHz. In addition to the centroid shift, the blackbody
radiation also couples to the hyperfine splitting. When mea-
suring only one hyperfine component, we are sensitive to both
effects. However, the blackbody modification of the hyperfine
splitting is at room temperature below the microhertz level
[75]. Of course, cooling the environment as it is done in other
clocks is another option [114].

In the remaining part of this section, we discuss the lattice
shifts induced by the trapping laser through imperfections and
higher-order contributions of the light shift. We limit the dis-
cussion to an axial probe laser and a standing wave-trapping
laser. In this case, the motion of the atoms in the trap has
to be described quantum mechanically with a vibrational-
state quantum number n not much larger than unity (see
Sec. VII B). With the two clock states having slightly different
light shifts, the curvatures of the trapping potentials at the
minima for these states are no longer exactly equal. This
causes the quantized vibrational states within the trapping
potential to be modified differently. Approximating the trap
potential about the minimum by a quadratic function yields
different vibrational-state energies (38) [115]. As a result, the
clock transition frequency shifts are not limited to terms linear
in the trapping laser intensity It as stated in (20). A detailed
treatment of the clock transition frequency shift that includes
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the terms under consideration for the most advanced lattice
clocks can be found elsewhere [116].

Partial knowledge of this intensity is required to identify
such an “operational magic wavelength” [116,117].

As the simplest of these imperfections, the trapping laser
frequency may be slightly detuned from the magic wave-
length, i.e., 	νt 
= 0. The slope of the light shift [22] as a
function of its wavelengths is similar to other lattice clocks
[91]:

∂	α

∂νt
= −2.15748×10−17 Hz

Hz W/m2 , (40)

where 	α = α(2S) − α(1S), is the polarizability difference
between the two clock states. However, as the hydrogen clock
is expected to operate at a larger trap laser intensity, the slope
becomes more critical.

For a free atom, the second-order electric dipole perturba-
tion is proportional to the trapping laser intensity It while the
fourth order is quadratic in the intensity, i.e., ∝ βI2

t . Note that
there are only even orders for the light shift. This higher-order
shift is called the hyperpolarizability shift [118]. The real part,
i.e., the shift, is given for the 1S and 2S level by [94]:

β(1S) = −1.75×10−23 Hz

(W/m2)2

β(2S) = −4.88×10−18 Hz

(W/m2)2
. (41)

Two more contributions to the light shifts are due to the
so-called E2 and M1 polarizabilities, α = αE1 + αM1 + αE2,
where αE1 are the same as αt in (20). Both are linear in It and,
as such, would merely shift the magic wavelength to a new
value if the vibrational frequencies were not modified within
the trap. The E2 interaction is proportional to the gradient of
the electric field of the trapping laser, and M1 is proportional
to its magnetic field. As the M1 matrix elements act only on
spins, it can, for the hydrogen 1S-2S clock transition, only
connect hyperfine levels within the same principle quantum
number. These are far detuned from the optical frequency of
the trapping laser. Hence, the M1 induced light shift is very
small.4 We therefore limit the discussion to the E2 contribu-
tion whose coefficients are given by [94]:

αE2(1S) = −2.52 × 10−12 Hz

W/m2

αE2(2S) = 3.72 × 10−9 Hz

W/m2 . (42)

The light shift generally includes polarization-dependent
terms referred to as the vector and tensor polarizabilities dis-
tinguished by their rank [118]. Thanks to the scalar character
of the 1S and 2S levels, both terms vanish for the F = 0 →
F = 0 transition. A correction due to the tensor light shift
must be included if the F = 1 → F = 1 transition is used as

4Note that this is different for the Yb and Sr lattice clocks as upper
clock levels are given by a fine-structure triplet that is connected with
an E2 matrix element with a much smaller detuning of the trapping
laser.

FIG. 17. Lattice light shift of the 1S-2S transition due to the
optical potential following Ref. [91]. The atoms are assumed to be in
a standing wave lattice’s vibrational longitudinal ground state with
a waist radius of w0 = 50 µm. Different wavelengths are presented.
Red: The magic wavelength discussed in VI. Green: An operational
magic wavelength where the shifts and first derivative go to zero.
Blue: An operational magic wavelength where both the first and
second derivatives with respect to the trapping power are canceled.

the clock transition. The expected tensor light shift must be
compared to the smaller Zeeman shift of the F = 1 → F = 1
transition to determine which transition is more suitable for a
clock transition. For precision spectroscopy, we would like to
measure both transitions.

The vibrational modes of the trapped atoms and transitions
between them modify the light shift. The resulting lattice
light shift depends on the trapping laser parameters such as
waist radius, power, and whether a running or standing wave
is employed. By plugging (41) and (42) into Eq. (12) of
Ref. [91], we can compute the lattice light shift of the 1S-2S
clock transition.

In contrast to other lattice clocks, the lattice light shift can
be computed very accurately. There are several ways to make
use of this property. We can precisely pick a light shift curve
by shifting the trapping laser wavelength away from the magic
wavelength given in Sec. VI. Three examples are shown in
Fig. 17. At an operational magic wavelength of 514.656 nm,
the (green) curve possesses a maximum and a minimum with
known values of the light shift. Another operational magic
wavelength of 514.653 nm, shown in the (blue) curve in
Fig. 17, has an inflection point where both the first and the
second derivative, with respect to the intensity, cancel out.
In that case, the uncertainty of the 1S-2S transition frequency
depends on the trapping laser intensity only in the third order.

Experimentally, the power axis cannot be known very well,
also because the laser waist radius cannot be measured with
very high accuracy. However, this lack of knowledge only
scales the power axis without affecting the light shift axis in
these curves. The maximum, minimum, and inflection values
are fixed by the trapping laser wavelength. Assuming one
can determine the power axis scaling within a fractional un-
certainty of 1%, we expect a total shift of 660 Hz with an
uncertainty of 1.5×10−19 in fractional units when tuning to
the inflection point of the blue curve in Fig. 17.

To determine the power axis scaling, we will measure the
clock transition frequency at various laser powers. Fitting

033101-19



O. AMIT et al. PHYSICAL REVIEW A 112, 033101 (2025)

TABLE II. Estimated corrections and uncertainties in fractional
units for the proposed 1S-2S hydrogen clock. We assume that the
optical power can be stabilized to within 1%, stray magnetic fields to
1%, and stray electric field to 50%. The dc Stark shift is the leading
systematic and requires precise field compensation and cancellation.
The large lattice light shift can be calculated to the required accuracy
such that the uncertainty only comes from the uncertainty in the
trapping laser power.

Effect Correction Uncertainty

dc Stark 9×10−17 5×10−17

Collisional shift −8×10−17 2×10−17

BBR −4×10−16 6×10−18

Zeeman 5×10−16 5×10−18

Probe shift 1×10−16 1×10−18

Pressure shift −2×10−19 2×10−19

Lattice light shift 2.7×10−13 1.5×10−19

Second-order Doppler 1×10−17 1×10−19

Total 5.4×10−17

these data to our theoretical model will allow us to identify
the inflection point of the curve, providing a reliable refer-
ence for accurate power calibration. This method is similar
to the compensation of the dc Stark shift described above,
except that the compensation point is not at zero but at some
precisely computable offset. Note that these methods do not
require measurements of the trapping laser intensity or the
determination of the trap frequencies.

VIII. CONCLUSION

In this proposal, we introduced a new method for trapping
atomic hydrogen. Our method, relying on magnetic decelera-
tion, velocity-selective deflection, and photon recoil-assisted
loading, offers a promising solution for loading hydrogen
atoms into an optical dipole trap without laser cooling. The
estimated efficiency of our loading scheme is summarized
in Table I. One of the first challenges would be establishing
whether we have a high enough flux of low-velocity atomic
hydrogen in our cryogenic atomic beam.

We also discussed the potential for developing a hydro-
gen optical atomic clock, which could significantly advance
high-precision timekeeping and fundamental tests of QED.
Our preliminary estimate of the clock’s uncertainty put the
hydrogen optical clock at a precision level of 10−17 as detailed
in Table II. The leading systematic uncertainty is the dc Stark
effect. Our proposed methods represent a novel approach
to trapping atomic hydrogen and advancing atomic physics.
Future work will focus on addressing the uncertainties and
validating the effectiveness of these techniques through ex-
perimentation.
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APPENDIX
1. Trapping Monte Carlo

The atoms are assumed to start in the 2S state and are
either quenched to the ground state or ionized. If quenched,
then an atom is either trapped or lost. Therefore, we do not
need to include superpositions requiring techniques like the
Monte Carlo wave-function method. To describe the internal
state of the atoms, either the optical Bloch equations or rate
equations may be employed. These equations are solved nu-
merically along with the Newtonian equation of motion. The
trapping laser intensity provides the potential for Newtonian
terms and simultaneously determines the internal degrees of
freedom dynamics.

A few things need to be added to the simple two-level
optical Bloch equations for the 2S and 3P levels to describe
the full system. Two additional levels must be considered: the
1S state and the continuum. These can be treated as reservoirs
without coherent terms with the other levels. The Newtonian
motion uses the force on the 2S level only. This is because the
trajectory ends when the atom is quenched to the 1S state or
ionized. The force on the 3P level may differ from that on the
2S level. However, if we assume that the 3P level is occupied
only briefly (if at all), then we may ignore that difference.
The resulting optical Bloch equations are expressed using the
usual density matrix:

ρ̇gg = −� Im(ρge) − (�2s1s + �i2s)ρgg + �3p2sρee

ρ̇ge = −iδρge + i
�

2
(ρgg − ρee )

− 1

2
(�2s1s + �i2s + �i3p + �3p2s + �3p1s)ρge

ρ̇ee = +� Im(ρge) − (�3p1s + �3p2s + �i3p)ρee

ρ̇1s = +�2s1sρ1s + �3p1sρee (A1)

The parameters are as follows: ρgg and ρee are the popula-
tion of the 2S and 3P states, respectively. The 2S(F = M =
0) − 3P3/2(F = 1, M = 0) Rabi frequency for linear polar-
ized light is given by � = 1.445a0eEq/h̄ [87] with the electric
field of the quenching laser Eq and the Bohr radius a0. We
ignore the fine structure, which may be a good approximation
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if the laser is blue-detuned relative to the uppermost level of
the excited state. The decay constants are labeled �xy for the
decay path x → y and �ix for the ionization of the state x.
The quenching due to the quenching laser is described by
the two-level part of the optical Bloch equations (first three
equations) and the spontaneous decay rates of the 3P level
[119]:

�3p2s = 22.45 1/s �3p1s = 167.25 1/s. (A2)

The 3P level can be ionized by the trapping laser with only
one photon. Hence, this channel is significant even for the
fast-decaying population of the 3P. The rate is obtained by
following the method described in Ref. [77]:

�i3P = 2.68×10−3 1/s

W/m2 ×It . (A3)

The quenching laser is only useful at a reduced trapping laser
intensity to limit the loss. The remaining parameters are found
in the main text.

The optical Bloch equations are completed alongside the
Newtonian equation of motion. The latter can be reduced to
six first-order equations by introducing the atomic velocities.
The equation for ρge may be decomposed into its real and
imaginary parts, depending on the solver in use. We use
the fourth-order Runge-Kutta odint routine from Numerical
Recipes [120] that requires a real-valued set of first differential
equations.

In addition to the potentials (19) provided by the trapping
laser, the quenching laser with an intensity Iq generates an
additional potential

φq = αqhIq (A4)

for the 2S state with polarizabilities [22]:

αq = (133.22, 96.67, 48.33, 9.666, 0.9663)
Hz

W/m2 . (A5)

The five values are given for detunings of δ = 2π×
(500 MHz, 1 GHz, 2 GHz, 10 GHz, 100 GHz), respectively.

Writing the intensity of the traveling-wave trapping laser
as

It = w2
0

w2(z)
I0t e−2r2/w2(z) (A6)

with

I0t = 2Pt

πw2
0

and r2 = x2 + y2 (A7)

as well as

w2(z) = w2
0

(
1 +

(
z

zR

)2)
and zR = πw2

0

λt
(A8)

we get the radial and axial components of the force:

Fr = αt h
4r

w2
t (z)

It (A9)

and

Fz = 2αt h

(
1

w2(z)
− 2r2

w4(z)

)
z

(
w0

zR

)2

It , (A10)

respectively.

FIG. 18. Simplified geometry used in the Monte Carlo
simulations.

For the knife-shaped collimated quenching laser, we as-
sume the intensity profile:

Iq = I0q e−2z2/w2
0q . (A11)

This laser crosses the trapping laser at z = 0 as shown in
Fig. 2. To compute the 2S-3P Rabi frequency �, one also
needs the field strength of the quenching laser:

Eq =
√

2I0q

ε0c
. (A12)

In case the quenching laser of this form is present, the axial
force acquires an additional term:

Fz → Fz + αqh
4z

w2
0q

Iq. (A13)

In the case of a standing-wave trapping laser, the intensity in
(A6) needs to be multiplied by

It → It × 2 cos2(2πz/λt + πr2/λt R(z)) (A14)

with
1

R(z)
= z

z2
R + z2

. (A15)

While the wavefront curvature 1/R(z) could be important for
the funneling effect in a standing wave, we ignore the Gouy
phase as a tiny modification of the distances between antin-
odes. For numerics, working with the curvature is preferable
to avoid intermediate infinities. By virtue of the factor 2 in
(A14), the power is such that its spatial average is identical
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to the running wave. With this choice, the averaging action
of atoms moving through the standing wave can be directly
compared. This does not correspond to the situation obtained
with an added back-reflecting mirror.

Using a standing-wave trapping laser for the simulations,
one has to remember that the result may depend on the exact
launch point of the atoms, for example, at a node or antin-
ode. The favored parameters Pt = 1 kW, w0 = 50 µm, and

dt = 30 cm give rise to an additional initial velocity of about
0.1 m/s.

For the simulations presented in Sec. VI C 1, we have used
the simplified geometry presented in Fig. 18. In this geometry,
we approximate the elliptical cross section of the deflection
and trapping laser as a circle. This slightly changes the solid
angle of the funneled atoms but simplifies the drawing of
atoms from the distribution (8).
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